High Resolution Compressed Sensing Radar using Difference Set Codes
نویسندگان
چکیده
In this paper, we consider compressive sensing (CS)based recovery of delays and Doppler frequencies of targets in high resolution radars. We propose a novel sub-Nyquist sampling method in the Fourier domain based on difference sets (DS), called DS-sampling, to create dictionaries with highly incoherent atoms. The coherence of the dictionary reaches the Welch minimum bound if the DS-sampling is employed. This property let us to implement sub-Nyquist high resolution radars with minimum number of samples. We also develop a low complexity recovery method, based on structured CS and propose a new waveform, called difference set–frequency coded modulated (DS-FCM) waveform, to boost the recovery performance of the sub-Nyquist radar in noisy environments. The proposed method solves some of the common problems in many CS-based radars and overcome disadvantages of the conventional Nyquist processing, i.e. matched filtering in high resolution radar systems. The proposed method allows us to design sub-Nyquist radars, which require less than 2% of Nyquist samples and recover targets without resolution degradation in comparison to the conventional Nyquist processing.
منابع مشابه
High Range Resolution Profiling for Stepped-Frequency Radar with Sparse Reconstruction
The newly emerging theory of compressed sensing (CS) enables restore of a sparse signal from inadequate number of linear projections. Based on compressed sensing theory, a new strategy of high-resolution range profiling of stepped-frequency (SF) radar with missing pulses is proposed. If a certain part of received pulses are missing, we demonstrate the proposed method is capable of reconstructin...
متن کامل3D Imaging Millimeter Wave Circular Synthetic Aperture Radar
In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, th...
متن کاملForward-looking Imaging of Scanning Phas- Ed Array Radar Based on the Compressed Sensing
In this paper, a novel forward-looking imaging method based on the compressed sensing is proposed for scanning phased array radar (PAR) in order to improve the azimuth resolution. Firstly, the echo of targets is modeled according to the principle of PAR. Then, it is analyzed why some of the former methods as multi-channel deconvolution are ineffective based on the signal model. Using a widely a...
متن کاملCompressed Sensing algorithms performance with superresolution in a passive radar
The paper presents a study of Compressed Sensing application in a passive radar, where the range resolution is limited by the bandwidth of signal used. The application of Compressed Sensing allows to obtain superresolution in a presence of a point target, which is useful e.g. when exploiting multipath information for estimating the target elevation. However, in such setup, Compressed Sensing al...
متن کاملA Novel Image Formation Algorithm for High-resolution Wide-swath Spaceborne Sar Using Compressed Sensing on Azimuth Dis- Placement Phase Center Antenna
High-resolution wide-swath (HRWS) imaging with spaceborne synthetic aperture radar (SAR) can be achieved by using azimuth displacement phase center antenna (DPCA) technique. However, it will consequently leads to extremely high data rate on satellite downlink system. A novel sparse sampling scheme based on compressed sensing (CS) theory for azimuth DPCA SAR was proposed, by which only a small p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1605.05379 شماره
صفحات -
تاریخ انتشار 2016